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ERRATUM

NACA TN 1572

STABIITY DEIATIVES OF TRIAMULAR WI1lS AT
SUPERSONIC SPEEDS

By Herbert S. Ribner and Frank S. Malvestuto, Jr.

May 1948

Page 7: The important derivatives CL& and C% are obtained

incorrectly. The corrected values for these derivatives should read
as follows:

L 3AE" (BC) - M2TH(C) (4a)cI: 2 M2 -l

16 M 2 -l1

The same correction should be made for these derivatives in table I
in the column "Principal body axes." In the column "Stability axes"
of table I the corrected expressions are

irAE'' (BC) - M2 1(BC)CL& = 2 M2 - 1

C& = (+ 8 cgE' MI(BC) - M2H(BC)

Cxl16 gc/ M2_1

The error in the derivation consists in the assumption, carried
over from reference 1, that the surface potential, equation (3), is
not altered by a small normal acceleration. This assumption is true
for the narrow triangles treated in reference 1 but fails for the
general triangles treated. in the present paper. The assumption is

equivalent to the neglect of the time dependency terms - Oxt

and 1 t(where t represents time and E is the speed of sound)

in the linearized partial differential equation for unsteady motions:
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_L Ot = 0(a)
aE ag

which leaves only the steady-state (Prandtl-Glauert) equation

B20x -yy _ -zz 0 o(b)

The correct potential to replace equation (3) must satisfy both
equation (a) and the boundary condition on the wing

(7)Z- = -ay c

In an unpublished paper, Mr. Clifford S. Gardner has, in effect, shown
that a suitable solution is

0 M 2  m2x x (d)
+x

T2- (t -v2)

where * is the steady-state potential corresponding to a unit
pitching velocity about the y-axis and X is the steady-state
potential corresponding to unit angle of attack. Both * and X
satisfy equations of the form (b). That equation (d) is a solution
can be verified by direct substitution into equations (a) and (c).
Thus, Gardner has shown that the time-dependent potential for an angle
of attack &t may be compounded of two time-free, or steady-state,
potentials, one for a constant angle of attack and the other for

steady pitching.

The lift distribution at time t = 0 for the angle of attack &t
is obtained from the potential by

£6P = 2P(Vo. + Ot)

2pV&B( 2X - V -

2 M*x A# ( e )

& --2(,,q=l _ -~( P) e

n ~B n V
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where

(aP)q=l lift distribution for unit pitching velocity

(AP)a.=l lift distribution for unit angle of attack

L\P* value of AP per unit & used in deriving the
incorrect equations (4) and (5)

Integration of equation (c) over the plan form to obtain the lift and
moment and reduction to coefficient form yields

2 *

L& B2 CLq B2 ma, B

__2_ 2M ./P (8)-C.+ T2 F 2_ 1 j2(

form

where the * designates the incorrect values in equations (4) and (5)
respectively, and the y-axis is taken through the center of gravity.

Values of CLq, CMa, and C.q, may be obtained from table I

and * and (C , from equations (4) and (5). The

quantity (_L-- \ is obtained by setting m = 1 and a = C(2 c + x)

2 a --= 1
in equation (1). Substitution and integration then yields the

corrected values for CL and Cm, (equations (4a) and (Sa)) as set

forth at the beginning of this erratum.
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STABILITY DERIVATIVES OF TRIANGUIAR WINGS AT

SUPERSONIC SPEEDS

By Herbert S. Ribner and Frank S. Malvestuto, Jr.

SUMMARY

The analysis of the stability derivatives of low-aspect-ratio
triangular wings at subsonic and supersonic speeds, given in NACA TN
No. 1423, is extended to apply to triangular wings having large vertex
angles and traveling at supersonic speeds. The lift, rolling moment
due to sideslip, and damping in roll and pitch for this more general
case have been treated elsewhere on the basis of the theory of small
disturbances. The surface potentials for angle of attack and rolling
taken therefrom are used to obtain the lift due to domiward acceleration,
the several side-force and yawing-moment derivatives that depend on
leading-edge suction and a tentative value for the rolling moment due
to yawing. All the kaown stability derivatives of the triangular wing
at supersonic speeds, regardless of source, are summarized for convenience
and presented with respect to both body axes and stability axes. The
results are limited to Mach numbers for which the triangular wing is
contained within the Mach cone from its vertex. The spanwise variation
of Mach number in the case of yawing is nelected, although the effect
must be of importance.

I N T P 0 D U C T I 0 N

An earlier investigation (reference 1) has provided theoretical
stability derivatives of low-tispect-ratio wings of triangular plan form
at subsonic and supersonic speeds. The restriction to lcw aspect ratio
was a consequence of the limitations of the theory. Several Investigators
have since obtained pressure distributions for angle of attack, rolling,
pitching, and sideslip at supersonic speeds (references 2 to 6 and
unpublished analyses), without restriction to low aspect ratio. These
derivations have employed variants of the linear theory of supersonic
flcw ,nd have, in fact, constituted important steps in the development
of the theory.

If the rotations are taken about the vertex, the pressure distribu-
tion for each motion in the more general case is found to have the same
shape as the corresponding low-aspect-ratio approximation, so long as
the triangular wing is contained within the Mach cone from the vertex.
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The magnitudes differ by factors which are functions solely of the ratio
of the tangent of the semivertex angle of the triangle to the tangent of
the Mach angle. The same similarity exists between the distributions of
surface potential. It is thus relatively simple to extend most of the
derivations of reference 1 to remove the restriction to low aspect ratio
for supersonic speeds. Such an extension is made in the present paper.

The lift-curve slope, the damping in roll and pitch, and (in effect)
the rolling moment due to sideslip have been evaluated in references 2
to 6, so that the principal contributions of the present paper are the
several side-force and yawing-moment derivatives and a tentative value
of the rolling moment due to yawing. All the known stability derivatives
of the triangular wing at supersonic speeds, regardless of source, are
collected herein for convenience and presented with respect to both body
axes and stability axes. Wings with dihedral are not treated (although
they were included in reference 1) and the results are limited to Mach
numbers for which the wing is contained within the Mach cone from its
vertex.

SYMBOLS

x,y,z rectangular coordinates (fig. 1)

u,v,w incremental flight velocities along x-, y-, and z-axes,
respectively, figure 2; induced flow velocities along
x-, y-, and z-axes of figure 1, respectively

p,q,r angular velocities about x-, y-, and z-exes, respectively,

figure 2

V flight speed

M stream Mach number (V/Speed of sound)

MI component Mach number normal to wing leading edge (- )

B cotangent of Mach angle (VM 2T -1

M angle of attack (Flight w/V)

angle of sideslip (Flight v/V)

C semivertex angle of triangle

Mach angle (ot- \/M2- _l)

/
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AP local pressure difference between lower and upper surfaces of
airfoil, positive in sense of a lift

p density of air

a semiwidth of triangle at distance x from vertex

b span (base of triangle)

c root chord (height of triangle)

mean aerodynamic chord (6=2 f b/2 (Local chord) 2 dy c)

C edge slope a da A =cL

A aspect ratio (7)

S area of triangle (1c)

0velocity potential
1= cos- I Y

a

k= l- B2 C2

E'(BC) complete elliptic integral of the second kind with00,
m~odulus k; 1 0 i k2sin2 z dz)

F'(BC) complete elliptic integral of the first kind with

modulus k; dz

1 - k2sin2 z/

E"(BC) 1

E'(BC)

G(BC) = 1 - B2C2

(1 - 2B2C2)E,(BC) + B2C2F'(BC)

H(BC) = 3G(Bc) - 2E"(BC)
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I(BC) = 2(1 - B2C2 )

(2 - B2C2 )E'(BC) - B2 C2 F'(BC)

J(BC) = E"(BC)I(BC) 1 -- B2 C2

K constant defined in equation (16)

N yawing moment

Y lateral force

f suction force per unit length of edge(Lift
C lift coefficient -

L ~2 )

C pitching-moment coefficient Pitching moment

C rolling-moment coefficient ' Rolling momentZ~~~ roln-mmn I V 2 Sb

Cn yawing-momnt co°eff icient 1 N 2b"

C y lateral-force coefficient ( )

0D profile-drag coefficient (Profile dra )

vN induced surface velocity normal to wing leading edge

8 perpendicular distance of point (x,y) from wing leading edge

1cg distance of center of gravity forward of 3

Subscripts:

R right edge

L left edge
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Whenever m., a, q, p, 0', and r are used as subscripts, a
nondimensional derivative is indicated and this derivative is the slope
through zero. For example,

C Ci-- c' -- ---\
.4 (9\ q-4 2v) q oP-40

0 -4o r ,rb

rr-o

A dot above a symbol denotes differentiation with respect to time.

All angles are measured in radians.

ANALYSIS

SCOPE

The stability derivatives of triangular wings at supersonic speed
that have been treated theoretically herein or elsewhere are listed in
table I, together with the expressions that have been found for them.
All the derivations make use of body axes. The derivations that follow
give the values with reference to the pr ncipa; body axes of figure 2
with origin at the aerodynamic center (c, 0,0). Conversion has been

made to the system of stability axes shown in figure 3 with origin a
distance xcg ahead of the Lc point. Table I comprises parallel columns

which present formulas relative to both systems. The expressions are
limited to Mach numbers for which the triangle is contained within the
Mach cone from its vertex.

DERIVATIES ,LCL, CL,  and Cm&

The pressure distribution on a thin delta wing at an angle of attack
in a supersonic stream has been obtained in references 2 to 4 by the
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linearized theory without restriction on the vertex angle of the triangle.
The approximation originally given for the slender (low-aspect-ratio)
triangle (reference 7) and used as the basis for reference 1 is found to
apply to the general case upon division by a constant (an elliptic integral)
that depends on the ratio of the semivertex angle to the Mach angle. That
is,

AP 4aCmA? _ t:ac (1)
1_ 2  _ -n '
7 PV2  EI(BC) 4ar - Y2

where E'(BC) is the complete elliptic integral of the second kind with
modulus

k 1 _lB2C2

Thus the lift-curve slope for the more general case is the value given by
references 7 and 1 divided by E'(BC):

C 
A

2E'(BC)

Tr
-- AE"(BC) (2)2

The surface potential given in equation (3) of reference 1 is likewise
extended to include nonslender triangles at supersonic speeds upon division
by EI(BC). The revised potential is

Vca sin
E'(BC)

+- a (3)
E'(BC)

The elliptic integral E'(BC) depends only on the parameter BC tanC
tan i

(ratio of the tangent oC the semivertex angle of the delta wing to the
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tangent of the Mach angle) and is therefore a constant for a given wing
at a given speed. The derivations in reference 1 for CL. and C

which are based on the potential 0, thus merely acquire a factor

E"(BC) = 1
E' (BC)

C E"(BC) (4)
L.2

C E"(BC) (5)
m. 16

DERIVATIVES C q c L , andqCp

The derivatives CN, CLq, and CP are derived in reference 5.

With respect to the axes of figure 2

C 3"A G(BC) (6)
mq 16

CL i A H(BC) (7)
q

c - ,A I(Bc) (8)
p 32

where

G(BC) = 1 - B2C2 (9)
(1- 2B2C 2)E'(BC) + B2 C2F'(BC)

H(BC) = 3G(BC) - 2E"(BC) (10)

I(BC) = - 2(1 - B2C2 ) (11)
(2 -B

2 C2 )EI(BC) - B2 C2 .F'(BC)
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and F'(BC) and E'(BC) are the complete elliptic integrals of the first
and second kinds, respectively, with modulus k = l -B2C 2 .

DERIVATIVE C I

The pressure distribution over a thin delta wing in yaw (sideslip) at
an angle of attack at supersonic speed has been obtained in referen e 6
and unpublished work. If the angle of yaw is assumed to be small (I <<k,

the rolling-moment coefficient can be expressed in the approximate form

C, 1--'0 E"(BC)
2"' 3

Thus, the derivative with respect to P is

C2  = - E"(BC) (12)
3

An alternative derivation based on the surface potential, equation (3),
for the unyawed wing will be given because the method provides the starting
point for a derivation of C r, Cnr, and Cy .

r

The potential for the disturbance velocity may be expressed relative
to axes alined with the stream (wind axes) or with respect to axes that
yaw with the body (body axes). For small angles of yaw (O << ), the

linearized equation for the potential has the same form relative to either
system of axes. The potential is determined by the normal velocity of
points of the surface and by the orientation of the surface; for
negligible thickness, this normal velocity is just 6V for all angles
of yaw. The potential expressed relative to wind ames thus varies as
the wing yaws relative to these axes. The potential expressed relative
to body axes is constant for small yaw because the orientation of the wing
relative to the axes does not change.

For wind axes, Bernoulli's law has the form

z=P = 2pV -

and the change in the pressure distribution with yaw results from the chanp
in the potential function with yaw. For body axes with small yaw,
Bernoullits law has the approximate form
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AIP = 2pV(76) (13)

and the change in pressure distribution with yaw results from the

term -3 since 0 does not change.

In reference 1 in the section entitled "DERIVATIVE C1," the

derivation employs body axes and equation (13) of the present paper.
The surface potential used (equation (3) of reference 1) is the
approximation for narrow vertex angle. Equation (3) herein for a
general vertex angle may be used instead. Equation (3) herein differs
only in the factor 1/E'(BC), whence the earlier expression for C,

(equation (19), reference l,with r = 00) acquires this factor to agree
with equation (12).

DERIVATIVE C r

The foregoing discussion of the triangular wing in yaw (sideslip)
may be extended to provide a preliminary treatment of the case of a
small angular velocity of yaw r. The corresponding extension for
narrow vertex angle is made in reference 1. The treatment is general-
ized to an arbitrary vertex angle for supersonic speeds,as before, by
using equation (3) herein for the surface potential. Two changes then
appear in the pressure equation, equation (20), of reference 1. The
right-hand side is divided by E'(BC), and the term aC = xC2 must be
retained, since C2 is no longer small compared with unity (C = tangent
of semivertex angle). With these changes, the derivation leads to

C i. + E"(BC) (14)CZr (T 6)

In the derivation of equation (14), the spanwise variation in local
Mach number caused by yawing is not taken into account although the
variation in forward speed is taken into account. The surface potential
that is used, equation (3), satisfies the linearized equation for a flow
of uniform Mach number. This potential is inadequate to describe the
compressibility effects associated with a spanwise variation of Mach
number.

Thus, consider a high-aspect-ratio rectangular wing with tips cut
off along the Mach lines. In straight flight the Ackeret theory can be
applied. The pressure difference is given by
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22 (Speed of sound) 2  (15)
/M 2 -1

In yawing flight the forward velocity varies linearly along the span. If
the rate of yaw is made sufficiently low, the variation from wing tip to
wing tip can be made so small that the flow is still nearly two-dimensional
at any point. Thus the Ackeret theory is still applicable if the local
Mach number is used at each spanwise station.

The variation in pressure with local Mach number can be obtained from
equation (15). As the Mach number is increased, the pressure decreases
from infinity at M = 1 to a minimum at M = 1.4 and then increases again.
Thus below Mach number 1.4 the faster moving sections of the yawing wing
have the lesser lift. This result is contrary to subsonic behavior and to
that which would be predicted if the spanwise variation of Mach number were
neglected. Thus the spanwise variation of the compressibility effect causes
a reversal of the sign of the rolling moment due to yawing for rectangular
wings at Mach numbers between 1 and 1.4, and at M = 1.4 the moment is
zero. (This result refers to yawing in a system of stability axes, fig. 3.
For body axes, fig. 2, the effect is similar but the reversal extends
to M = c.)

A yawing triangular wing may be expected likewise to show an effect
of the spanwise variation in Mach number. If the triangle is contained
within the Mach cone from its vertex (the only case considered in this
paper), however, the effect should be very much less than for the rec-
tangular wing. In particular, where the predicted effect for the rec-
tangular wing is a reversal of the sign of the rolling moment, the effect
for the triangular wing is expected to be merely a change in the magnitude.
A reversal in sign is not expected until the edges of the triangle protrude
from the Mach cone. This behavior is inferred from the fact that the
analyses of references 2 to 7 show many subsonic characteristics for
triangles within the Mach cone and a marked change in characteristics for
triangles with side edges outside the Mach cone.

DERI ATI ES CYp and

Extensive changes are necessary to generalize the treatment of Cyp

and Crp in reference 1 to arbitrary vertex angles for supersonic speeds;

therefore, the revised derivation is given in detail.

The derivatives C y and Cnp relative to body axes for a very

thin delta wing without dihedral arise entirely from suction on the wing
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side edges. Consider a condition for which the induced velocity normal
to the edge is of the form

= + K (16)

in the immediate neighborhoOd of the edge, where s is the perpendicular
distance from the edge and K is a constant. Reference 3 points out
that for such a flow there is a suction force per unit length of edge,

f= tK 2  1-M' 2  (17)

so long as the delta wing does not protrude from the Mach cone from its
vertex. In equation (17), M' is the Mach number of the component of
the stream flow normal to the leading edge. The radical \1 - M12  is
the Prandtl-Glauert compressibility factor for the normal component of
flow. Equation (17) is limited to real values of the radical by the
condition expressed for the Mach cone.

For the delta wing in rolling motion the induced velocity component u
has been obtained in reference 5 as

Ul + I(BC)

Angle of attack gives the additional contribution (reference 2)

u2  E(BC C2

The total induced velocity on the upper surface is thus the sum of u1

and u2 with the plus sign

EV(BC) 2

Very near the side edge this velocity Is approxiixitely
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u = c3/2 a.V -+ L__x I (B c
2 C E'(BC) 2

where the plus sign refers to the right edge and the minus sign to the left

edge.

If a similar calculation is made for v = it is found that as

the side edge is approached the resultant induced velocity +u2 + _

becomes normal to the edge. Thus the normal velocity near the edge is

1+ C2

v N C U

The perpendicular distance of point (x,y) from the side edge is

The resultant induced velocity very near the edge may therefore be
expressed approximately as

[ mV I(BC)pCj 
1/ C 2 (2 )1/2

which is of the form of equation (16). The suction force per unit length
of edge is from equation (17) thus

f fPC MV2 + [I(BC)1pc2 .T~iVvC 2

2~ [EI(BC] 2 4f (1+c 2 (1C)2

where the plus sign refers to the rigt edpe and the minus sign refers to
theeftedge. The factor -4(i + C2)(1 - M'2 ) can be reduced to
V1-B 2  where B2 =M-1.

The lateral component of this suction force is given by

i i I
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Y=.f_ pCc3p (f() BC

A 23 1I(B C)

_ PCc o.Vp E'(BO)

The lateral-force coefficient is formed by division by 1 pV S, and
2

the derivative with respect to pb/2V is the stability derivative C
It is -p

C 2-g !(BC) V/1 - BC 2  (80y = 2TcL-(c (i8)
3 E'(BC)

The yawing moment of the leading-edge suction about the vertex of
the triangle is

N0  -f f() l+C2d(x + 02)

A P0 c4cVp(1 + C2) I(BC)
.1 E'(BC)

The moment about the reference point (2,O,) is

N = No + 2cy3

- - _ mcxVp(l + 92) I(BC) 41- B2PCC

36 E'(BC)

The yawing-moment coefficient is formed by division by pVSb, and

the derivative with respect to pb/2V is the stability derivative Cnp
It is

9A ) I ( B C ) Q i - B 2 C 2

c1p 16 -Bc (19)
Et(BC)
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DEIVATIVES CY C and C

According to the discussion on C , a small angle of yaw or

sideslip (0 <<v) does not alter the surface potential expressed

relative to body axes. As a consequence the induced velocity distribu-
tion is unchanged. Thus the initially symmetric distribution of leading-
edge suction persists in sideslip, and the derivatives Cy, and Cn
are zero.

The surface potential relative to body axes is likewise unaltered in
the first approximation by a small angular velocity of yaw. Accordingly,
insofar as the pressure forces are concerned, the derivatives C Yr and Cnr

are zero. Subsonic experience, however, suggests an appreciable
Cr-derivative (damping in yaw) from profile drag. This damping derivative

has been evaluated in reference 1 as

Cnr = -- CD  +- (20)

RESULTS AND DISCUSSION

The formulas that have been obtained for the various stability
derivatives are collected in table I. Derivatives obtained elsewhere
are included for completeness, and the source is indicated In each
instance. Expressions are given for two systems of coordinate axes.
In the first column are shown the derivatives relative to the principal

2body axes of figure 2 with origin a distance c from the vertex of the

triangle. In the second column are shown the results relative to
stability axes with origin a distance Xcg ahead of the Z point.

Cg 3
The relationship between the two systems of axes is shown in figure 3.
Equations for transforming from body axes to stability axes are given
in reference 8; the shift in origin results in additional ters.

In the transformation of the present results from principal body
axes to stability axes terms of order A2/16 and the more important
terms of order a2 are retained (see footnote, table I), whereas in
reference 1 such terms are dropped as a consequence of the narrow vertex-
angle approximation.
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These results for an arbitrary vertex angle may be compared with the

asymptotic values for the case of vertex angle approaching zero given in

reference 1. The present results for principal axes are found to differ

from the asymptotic values (except for small terms in A2 and a2 ) only

In the acquisition of certain factors which are functions of BC. Thus

the asymptotic values for CL' CL, Cmq CZ and CZ are multiplied

by E"(BC); Cmq is multiplied by G(BC); CL is multiplied by H(BC);

C Z is multiplied by I(BC); and Cn and C are multiplied

pp pIy (BC) ,,r1- B2C2  ta
by B J(BC). The parameter BC = t is the ratio of

E'(BC) tan

tangent of the semivertex angle of the triangle to the tangent of the

Mach angle. BC approaches zero, therefore, as the vertex angle approaches
zero. The several functions E"(BC), . . ., J(BC) all approach unity

as BC approaches zero, and thus the derivatives obtained herein approach
the asymptotic values of reference 1 as the vertex angle goes to zero.

The variation of these stability derivatives with Mach number is
contained entirely in the factors E"(BC), . . ., J(BC). The five

factors are plotted against BC = tan the ratio of the tangent of
tan

the semivertex angle to the tangent of the Mach angle, in figure 4.

The derivatives apply to a wing of triangular plan form and zero

thic. ness. The calculations are based on the assumption of potential

flow with small disturbances, except in the case of the derivative Cnr

in which skin friction is considered. The predicted infinite negative
pressure acting on an edge of zero thickness to yield a finite suction
force is, of course, a mathematical idealization. (The local violation

of the assumption of small disturbances is not serious.) Subsonic
experience indicates that with a suitably rounded edge a considerable
leading-edge suction force may be realized in practice, with the

theoretical value an upper limit. On the other hand, a sharp leading edge

is known to cause loss of the leading-edge suction. The requirements of
extreme thinness and a rounded lead;ng edge (that is, appreciable radius

of curvature) are evidently in conflict. Thus the degree of applicability

of the yawing-moment and lateral-force derivatives to actual triangular
wings is uncertain. A further limitation on validity, already elaborated

on in the section on C~r, exists also for the derivatives with respect

to yawing velocity. The analysis neglects the spanwise variation in

Mach number caused by the yawing (but not the spanwise variation in
velocity). The result is an error in the magnitude of the yawing
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derivatives that is expected to vary from zero for BC--)0 to an important
amount for BC--l.

The potential 0 satisfies the linearized equation of motion for
the steady state but not the more general linearized equation for unsteady
motion. This circumstance implies that the present expressions for the
stability derivatives are suitable only for steady motions, motions with
small accelerations, or sinuous motions of low frequency. This limitation
is accepted in all stability work and may become serious only in cases of
high-frequency oscillations such as flutter.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Va., November 6, 1947
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TABLE I.- STABILITY DERIVATIVES OF THIN TRIANGULAR WIPGS AT SUPERSONTC SPEEDS

Source Principal body axes Stability axes

Derivatie (if not derived rigin at 2c rigin at distance x, ahead of _c poin

4erein) 31 cg 3

CL References 2 to 4 E"(BC) A E"(BC)

a2 2

Ca EE"(BC) 2 E" (BC)

%L Reference 5 ! H(BC) L H(BC) + ,A :cg E"(BC)
q 2 2

I

Cm References 2 to
4  

0 - A L E"(BC)

- !A E(BC) -A + 8 E"(BC)

_2

' L A Ac 9 A( B C )Reference 5 3A G(BC) JIL G(BC) - - = H(BC) - AA E"(BC)

Cqa 16 16

Cz Reference 6 - ES E"(BC) C E"(BC)

03 3

Reference - !I(BC) ! EA I(BC) + 1_2 8 X.- -"(BC) -+(BCCp Reerne2 32 9A + 8 c)

saLi-- "(BC) a + A + E"(BC) + -- CDoC9A
r

A 16 9A / 3 (BC +

3-_2 E"(BC)

T_# .)J(BC) J(BC) AI(BC) - CD~ +

Re4ferenceA 1L +C(~ ~ -L !?)[E" (BC) -J(BC1)-9.A ±I(BC)

S 0 0

2'a J(BC) 2aJ(BC)
Cp 3 3

Cy 0 2..2 J(2C)

r; 3

r ______ I 0____-____ -____-___________c___

lIn the transformation from body axes terms of order a
2 

have been neglected in comparison with unity, but terms of

order a
2
/A have been retained, since they may be appreciable for small values of A. , A
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c b '

Figure 1.- Axes and notation used in analysis.

p,,LV3

WIZ

Figure 2.- Velocities, forces, and moments relative to
2

principal axes with origin at -c.5

TY

P L
rN 3

, NA C A
wZ

Figure 3.- Velocities, forces, and moments relative to
2

stability axes with origin at -c - xcg. Principal
3

axes of figure 2 dotted in for comparison.
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10

.3

.4

Flgure 4 Elllptlc In tegro'! factors of' the
.5abliiy dlerivatives- -that deternmine
Their varlation with M'ach nc,'nber,-

(See liable T.)


